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The Conway-Paterson-Moscow Theorem



Statement of Theorem

• Non-negative integers are written on the blackboard and on the discs 
on the men’s foreheads

• The men can see all the numbers except the one on their own 
forehead and can’t tell each other what their numbers are.

• The sum of the numbers on the men’s foreheads is equal to one of 
the numbers on the board.

• Then if the number of men is greater then or equal to the number of 
numbers on the board, one will eventually be able to deduce the 
number on their forehead after each is asked in turn cycling round 
the circle if they have deduced the number on their forehead.



An Example

The cartoon shows an example where three men, Arthur, Bertram and 
Charles have had discs with the number two put on their foreheads by 
the janitor acting on the instructions of Zoe at the blackboard. She’s 
blind but she’s written 6, 7 and 8 on the board. (2,2,2 | 6, 7, 8) is a way 
of describing the game.

They are all infinitely intelligent and honourable. They would like to go 
off to lunch but they like Zoe and are willing to humour her when she 
makes up games like this, and she has assured them it wouldn’t go on 
forever, even if Duncan and Englebert were there and five numbers 
were on the board.



Solving (2,2,2 | 6,7,8)

Arthur and Bertram will be asked first but let’s what Charles thinks.

I can see two 2’s so I must have 2, 3 or 4 so they add up to 6, 7 or 8.

If  I have a 2 then Arthur will see two 2’s and conclude he must have 2, 3, or 
4 and say No – he doesn’t know what’s on his forehead. Bertram will see two 
2’s and conclude using the same argument he has a 2, 3 or 4 but must say 
No.

If I have a 3 then Arthur will conclude he has 1, 2 or 3 and must say No. 
Bertram will see a 2 and  a 3 and also say No.

And if I have a 4 Arthur will conclude he has 0, 1 or 2 and say No. Bertram 
will see 2 and 4 and also say No.

So I can’t decide between 2, 3, and 4 so I say No.



Solving continued – or perhaps not!

So all three say No. And they all knew this was going to happen. And 
they start the cycle again and Arthur is asked again, then Bertram, then 
Charles..., and they answer No – No – No... again.

Charles concludes it is most likely that all three of them will each intone 
No a half dozen times and he still won’t know what his number is - but 
by then they’ll all be happy to just end the game and go off and have 
lunch.

… and actually as we’ll see, Charles is quite correct.

So that’s the theorem in tatters isn’t it?



Zoe the Blind Umpire
Zoe doesn’t know what numbers are on the peoples heads, only the numbers on 
the board. So what can she do as they say No? Well she can write down all the 
possible situations to start with:-

[0, 0, 6] [0, 0, 7] [0, 0, 8] [0, 1, 5] [0, 1, 6]  [0, 1, 7] [0, 2, 4] [0, 2, 5] [0, 2, 6] [0, 3, 3]  [0, 3, 4]

[0, 3, 5]  [0, 4, 2] [0, 4, 3] [0, 4, 4]  [0, 5, 1] [0, 5, 2] [0, 5, 3] [0, 6, 0] [0, 6, 1]  [0, 6, 2] [0, 7, 0]

[0, 7, 1] [0, 8, 0]  [1, 0, 5]  [1, 0, 6] [1, 0, 7] [1, 1, 4] [1, 1, 5] [1, 1, 6]  [1, 2, 3] [1, 2, 4] [1, 2, 5]

[1, 3, 2] [1, 3, 3]  [1, 3, 4]  [1, 4, 1] [1, 4, 2] [1, 4, 3] [1, 5, 0]  [1, 5, 1] [1, 5, 2] [1, 6, 0] [1, 6, 1]

[1, 7, 0]  [2, 0, 4] [2, 0, 5] [2, 0, 6]  [2, 1, 3] [2, 1, 4]  [2, 1, 5] [2, 2, 2] [2, 2, 3] [2, 2, 4] [2, 3, 1]

[2, 3, 2] [2, 3, 3] [2, 4, 0] [2, 4, 1] [2, 4, 2]  [2, 5, 0] [2, 5, 1] [2, 6, 0] [3, 0, 3] [3, 0, 4]  [3, 0, 5]

[3, 1, 2] [3, 1, 3] [3, 1, 4] [3, 2, 1]  [3, 2, 2] [3, 2, 3]  [3, 3, 0] [3, 3, 1] [3, 3, 2]  [3, 4, 0] [3, 4, 1]

[3, 5, 0] [4, 0, 2] [4, 0, 3]  [4, 0, 4] [4, 1, 1] [4, 1, 2] [4, 1, 3]  [4, 2, 0]  [4, 2, 1] [4, 2, 2] [4, 3, 0]

[4, 3, 1] [4, 4, 0]  [5, 0, 1] [5, 0, 2] [5, 0, 3] [5, 1, 0] [5, 1, 1]  [5, 1, 2]  [5, 2, 0] [5, 2, 1] [5, 3, 0]

[6, 0, 0]  [6, 0, 1] [6, 0, 2] [6, 1, 0] [6, 1, 1] [6, 2, 0]  [7, 0, 0] [7, 0, 1] [7, 1, 0]  [8, 0, 0]



Zoe figuring it out

Zoe will strike out every situation as soon as she knows the game 
would have terminated at that point with a Yes.

Arthur says No so Zoe can strike out

[0, 0, 8]  [0, 1, 7]  [0, 2, 6]  [0, 3, 5]  [0, 4, 4]

[0, 5, 3] [0, 6, 2]  [0, 7, 1] [0, 8, 0]

Because the sum of the other two is 8 so he would have 0 on his 
forehead. However he wouldn’t say Yes for [0, 0, 7] because [1, 0, 7]

would also be a possibility.



The rule Zoe uses

If A sees b, c, d... And there’s only possible value for ? In [?, b, c, d]

Then A can say Yes. Otherwise they will say No.

Bertram’s No means Zoe can eliminate

[0, 0, 7]  [1, 0, 7]  [2, 0, 6]  [3, 0, 5]  [4, 0, 4]

[5, 0, 3]  [6, 0, 2]  [7, 0, 1] [8, 0, 0]

The [0, 0, 7] is the only [0, ?, 7] - Arthur eliminated [0, 1, 7]



Continuing

Next Charles says No and that eliminates

[0, 0, 6]  [0, 7, 0]  [1, 7, 0]  [2, 6, 0]  [3, 5, 0]

[4, 4, 0]  [5, 3, 0]  [6, 2, 0]  [7, 0, 0]  [7, 1, 0]

[0, 7, 0] is eliminated the same as [0, 0, 7] was for Bertram,

but why [0, 0, 6]?

Well Arthur’s No eliminated [0, 0, 8] 

and Bertram’s No eliminated [0, 0, 7].



The Theorem again

If the number of numbers on the board is less than or equal to the 
number of people with discs on their foreheads, then eventually one of 
them will say Yes (if they’re infinitely intelligent and persistent!)

In fact after 18 No’s Arthur will say Yes, he has a 2 on his forehead.

The possibilities according to Zoe when Arthur says Yes are

[2, 2, 2] [2, 2, 3]  [2, 3, 2] [2, 3, 3]

So after they said No a half dozen times each and then Arthur says Yes 
Bertram and Charles still don’t know if it was a 2 or a 3 on their 
foreheads. Charles was quite correct!



The Proof start

1. If there is only one person, N=1, then he knows his number if there 
is one number on the board but will be unable to decide if there is 
more than one. The proof will be by induction on N.

2. For any set of non-negative numbers on the board there are only a 
finite set of non-negative numbers the people can have on their 
foreheads that add up to the numbers on the board.

3. If the No’s go on endlessly there must come a time when no more 
possibilities are removed



Proof Continued 

4. Suppose (a,b,c,d,e,...,n) is one of these possibilities that refuses to 
be eliminated for persons (A,B,C,D,E,...,N). Then for A there must be 
more than one possible value of a – say a0 and for the lowest.

5. Consider the situations with a0 fixed. We can remove it and subtract  
a0 from the numbers on the board – only ones still >= 0 can be part 
of possible sums.

6. Then we have by induction hypothesis that  N-1 people B....N need 
at least (N-1)+1 totals by induction  to keep the possibilities 
endlessy.



Proof completed

7. Adding  a0 back there  are at least N totals for (a0 ,b,c,d,e,...,n)

8. Find the highest possible total for that situation.

9. Then there is an aH > a0 which when put in will be a possibility and 
gives a higher total than any of the ones needed before.

10. Therefore at least ((N-1)+1)+1 = N+1 totals would be needed for a 
game with N people to never end.



A Question I’ve got horribly lost on

So that’s it, but how many No’s are actually required if they can skip 
over some people if they were going to say No, under what conditions 
would it be okay to do that?

For instance is Arthur has 2 on his forehead and Bertram has 1 and the 
sum is 3 or 4. Then both know that using Zoe’s method only [0, 4] is 
eliminated in the first round and the both know that and that the other 
knows that and that it isn’t a possibility. The same for Bertram then 
saying No eliminating [0, 3] and [4, 0]

Another headache-causing problem!?
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